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Abstract. Experimental data obtained from thermodynamic measurements in underdoped high temper-
ature superconductors show unusual anomalies in the temperature dependence of the electronic specific
heat both in the normal state and at the critical point associated to the superconducting phase transition.
The observed deviations from the standard behavior are probably linked with the opening of a pseudogap
in the energy spectrum of the single-particle excitations associated with the normal state. Based on a
phenomenological description of the pseudogap phase we perform analytical and numerical calculations
for the temperature dependence of the specific heat for both the superconducting and normal state. The
reduced specific heat jump at the transition point can be explained by a modified electronic single particle
contribution to the specific heat in the presence of the normal state pseudogap. The hump observed in
the normal state specific heat can be explained by the electronic pair contribution associated with strong
fluctuations of the order parameter in the critical region.

PACS. 74.20.Fg BCS theory and its development — 74.72.-h Cuprate superconductors (high-T, and
insulating parent compounds) — 74.25.Bt Thermodynamic properties

1 Introduction

One of the most controversial properties of high temper-
ature superconductor materials (HTSC) is the presence
of a gap in their normal state single particle excitation
spectrum [1]. Usually addressed as the pseudogap, this
relatively new feature just added a new controversy on
the long list of unusual properties of the normal phase of
HTSC. The pseudogap phase is seen in the underdoped
region of the HTSC phase diagram for temperature val-
ues above the superconducting critical temperature T, and
below a characteristic temperature T*. The presence of
the pseudogap phase was experimentally proved by direct
measurements of the single particle excitation spectra in
angle resolved photoemission spectroscopy (ARPES) [2,3]
and tunnelling experiments [4], but also in nuclear mag-
netic resonance (NMR), specific heat, resistivity, infrared
conductivity, and Raman spectroscopy experiments [5].
However, in spite of a large amount of experimental data,
there is still no general consensus on the nature of the
pseudogap phase, especially regarding the doping depen-
dence of the onset temperature T* around the optimal
doping point. As a function of doping, in one possible sce-
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nario, 7" merges with T, in the overdoped region, whereas
in a different scenario, T falls from large values in the
underdoped region to a zero value at a critical point, uni-
versally identify for all HTSC at p., = 0.19 [5]. From the
theoretical point of view, these two scenarios involve dif-
ferent approaches. In the first one, the superconducting
and pseudogap phases are strongly connected, the pseu-
dogap being associated with the formation of precursor
Cooper pairs (T, < T < T™*), pairs which become coher-
ent and condense at T, leading to the superconducting
phase [6,7]. A different theoretical approach leading to the
same conclusions with respect to the onset temperature 7*
consider the role of the pair fluctuations above the critical
temperature T, [8—-10]. In the second scenario, the key role
is played by the presence of an antiferromagnetic region
in the phase diagram at low doping values, the pseudogap
being a consequence of the direct interaction between the
electrons and fluctuations of the antiferromagnetic order
parameter [11,12]. Unfortunately, despite this large theo-
retical effort, an agreed description of the normal state in
HTSC (including the pseudogap phase) is still lacking.

In a recent work, Moca and Janko [13], performed a
detailed theoretical analysis of the electronic specific heat
in HTSC. Starting from a phenomenological description
of the pseudogap, it is argued that a correct description
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of the specific heat behavior in the normal state can be
obtained only with the inclusion of the electron pair con-
tribution. Such a scenario is sustained by the presence
of strongly enhanced fluctuations of the order parame-
ter in the critical region above the transition temperature
in quasi-two dimensional systems such as HTSC. In this
way the observed maximum [14,15] in the coefficient of
the electronic heat capacity, v(T') = C/T, can be fully
explained. However, the anomalies related to the specific
heat behavior are observed also in the specific heat coeffi-
cient jump, Ay(T,), at the transition point [5]. In the over-
doped region, where the presence of a pseudogap is still
questionable, the specific heat jump remains almost con-
stant. As the doping decreases, around the optimal doping
point, where the pseudogap is supposed to open, the spe-
cific heat jump starts to decrease. Once the doping value is
in the underdoped region, Av(T.) falls sharply, the larger
the pseudogap is, the smaller the specific heat jump be-
comes. The goal of this paper is to calculate the temper-
ature dependence of the electronic specific heat, both for
the superconducting and normal phase of HT'SC, and to
analyze its jump at the critical point based on a modi-
fied BCS theory which includes the pseudogap effects. A
similar approach of the electronic specific heat behavior
was considered by Loram et al. [14] in order to explain
the anomalous properties induced by the pseudogap in
YBaQCU306+x.

The paper is organized as follows: in Section 2 we dis-
cuss a phenomenological theoretical approach based on
the validity of Gorkov’s equations and we obtain the mod-
ified gap equation starting from a normal state character-
ized by the presence of a pseudogap, I;. In Section 3 we
discuss the specific heat behavior based on the proposed
model. Analytical results are obtained for the specific heat
jump at the critical point using Pauli’s theorem. Numer-
ical results for the specific heat coefficient, v(7'), are pre-
sented based on an analytical expression of the free energy
as function of temperature, below and above the critical
temperature T,.. A comparison between analytical and nu-
merical results for the specific heat jump at the transition
point is also presented. Section 4 gives our conclusions.

2 Theoretical model

In the following we will consider a simple model based
on the Gorkov’s equations formalism in which the normal
state Green’s functions will include the presence of the
pseudogap. A similar analysis was used by different au-
thors [16-18] in order to study the effect of the pseudogap
phase on different properties of the superconducting state.
Our theoretical approach is based on the assumption that
in the pseudogap phase the self-energy corrections to the
free electronic Green’s function are given by:

2(k,iwy) = —E5(k)Go(—k, —iwy), (1)

where Go(—k, —iwy,) represents the free electron Green’s
function, E4(k) the pseudogap, and w, = (2n + 1)7T

is the usual fermionic Matsubara frequency. This phe-
nomenological form of the self-energy was already used
to explain the form of the spectral function, A(kp,w), ob-
served in ARPES experiments [19]. A similar behavior of
the electronic self-energy was reported late in the seven-
ties by Schmid [20] as a direct consequence of electron-pair
fluctuation interactions in the critical region around the
transition temperature. However, it is not our goal to un-
derstand the origin of this phenomenological self-energy,
but to use it in order to extract different properties of
the superconducting state in cuprates. The normal state
Green’s function can be obtained with the aid of Dyson’s
equation as:

Gk, i) v 2)
Wn ) = . )
’ iwn — By dwp, + Ex

where Ef = & + EZ(k), up = (14 &/Ex)/2, and vf =
(1 — &/ Fx)/2 (& denotes the electron energy measured
from the Fermi level).

In terms of Green’s function formalism the standard
BCS theory is recovered by the use of the Gorkov equa-
tions:

Gyt (k,iwn)G (K, iwn) + AK)FT(k,iw,) = 1
A (K)G (K, iwn,) — Gyt (—k, —iwn) F(k, iw,) = 0. (3)

G(k,iwy) and F(k,iw,) represent the normal and anoma-
lous Green’s functions in the superconducting state. The
superconducting order parameter, A(k), is defined in the
usual way in terms of the anomalous Green’s function,
F(k,iwy), as:

Ak) = -TY) / (ST")Qv<k,p>ﬁ<p,mn>. (4)

The interaction term, V (k, p), supposed to be attractive,
is respounsible for the formation of the Cooper pairs. The
anomalous superconducting state Green’s function can be
easily obtained from Gorkov’s equations and using equa-
tion (4) the standard BCS gap equation is recovered.

Our theoretical model assumes the validity of Gorkov’s
equations for the case of HT'SC, where the free electron
Green’s function, Go(k, iwy,), is replaced by the more gen-
eral Green’s function given by equation (2). In this way
the effects of the pseudogap on the superconducting gap
equation are considered. A simple calculation leads to the
following general gap equation:

A(k) = —TZ/ (Qd:)QV(k,p)

A(p) [(iwn)2 - 5;2)} )
|A(P)|? [(iwn)? — €2] = [(iwn)? — €2 — E2(p)]”

X

(5)
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The sum over the Matsubara frequencies can be performed
analytically and the gap equation becomes:

1 / dp v*(p)
Va (2m)? 2\/A4(T) +4A%(T)E2
2 A2 T 2
y A%(T) it \/fp + A2(T)¥*(p)
V& +A2(T)2(p) 2t
B(T) \/f% + B*(T)y*(p)
- tanh T , (6)
V& + BA(T)(p)

where

AAT) = B2+ % [AQ(T) + \/A4(T) + 4A2(T)E§J ,

BX(T) = B2 + % [A2(T) —\JAsT) + 4A2(T)Eg} ()

¥(p) in the gap equation (6) is a factor associated with
the general symmetry properties of the superconducting
gap, pseudogap, and interaction potential. Experimental
data from ARPES and tunnelling experiments show that
both the superconducting gap and pseudogap have the
same symmetry, which in the case of HTSC is consid-
ered to be of d-wave type [2,3], with ¥ (p) = cos(20p)
(0p = arctan(p, /p;)). Implicitly, the symmetry of the in-
teraction term is assumed to be of the same type, i.e.,
V(p,k) = Vavo(k)y(p). The pure BCS case is simply re-
covered in the E;—0 limit. Note at this point the differ-
ences between our general gap equation (6) and the one
used by Loram et al. [14] in their approach. First of all,
equation (6) includes contributions beyond the ones con-
sidered in reference [14], which can be seen as a particular
limit of equation (6) for small values of the pseudogap,
E,. [21] Secondly, we considered a d-wave symmetry of
the order parameter, which is known to be more appro-
priate for the case of HTSC [2,3].

Unfortunately, the exact analytical solution for the gap
equation (6) at any temperature in the superconducting
state (0 < T < T.) is difficult to obtain. Instead we
performed a numerical calculation for the gap tempera-
ture dependence considering different values of the normal
state pseudogap. As a general observation we note that the
superconducting state is suppressed by the presence of the
normal state pseudogap. The value of the superconduct-
ing gap at T = 0 K, A(0), transition temperature, T,
and superconducting gap, A(T'), decrease as the pseudo-
gap increases. As an example of the numerical solution,
in Figure la we present the temperature dependence of
the superconducting order parameter, A(T), as function
of temperature for different values of the pseudogap, Ej.

However, some simplifications in equation (6) can be
made in order to approximate some of the superconduct-
ing state properties, such as the value of the critical tem-
perature, T, and the superconducting gap at T'= 0, A(0).
First of all the integration over the momenta is replaced

Fig. 1. (a) Numerical results for the temperature dependence
of the superconducting gap function for different values of the
ratio E4/Ap(0) (Ao(0) represents the superconducting gap at
T = 0 in the absence of the pseudogap). (b) The zero tempera-
ture normalized superconducting gap, A(0)/Ao(0), as function
of the ratio E,/Ao(0) obtained from both the numerical (full
line) and analytical (dashed line) calculations.

by an energy integration using the corresponding density
of states (DOS) in the normal state [22,18]:

€]
—NOE €] < By

1
N =42 , (5)

2N05 |€| >E9

where Ny denotes the DOS of a two dimensional (2D) free
electron gas. This form of the density of states resembles
the one seen experimentally in HT'SC and is different from
the constant density of states used in reference [14]. We
assume also the following energy scale, B, < A(0) < W/2,
with W being the bandwidth. This choice of the energy
scale is valid in the doping region around the optimal dop-
ing point [5]. Based on this assumption one finds [18]:

¢ S0 4T 1672 \Tw/) |’
E 3/ E, \*
A(0) = Ag(0) |1 — —L— — = J 9
0) = 20(0) |1 - 2 2(Ao(m) o

with T and Ap(0) being the critical temperature and
zero temperature order parameter obtained in standard
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d-wave BCS calculations [23]. As we can see, the effect of
the pseudogap is to decrease both the critical temperature
and the superconducting gap at T = 0 (see Ref. [18]), in
agreement with the numerical results. Figure 1b compares
the analytical result of equation (9) for the pseudogap
dependence of the T = 0 K order parameter with the exact
numerical result obtained by solving the gap equation (6).
The slopes of the curves are slightly different, but such a
behavior is expected as for the analytical results a number
of simplifications were made.

3 Specific heat

One of the most systematic experimental studies of the
thermodynamic properties of the HTSC are the specific
heat measurements [14,15]. Anomalies in the specific heat
behavior are reported especially in the normal state, the
coefficient of the electronic specific heat capacity, v(T'), in
underdoped samples being no longer constant as function
of temperature as we expect from the standard Fermi lig-
uid theory. The broad maximum observed in v(T) at a
specific temperature T, ~ T* is associated with the on-
set of the pseudogap. Moreover, the specific heat jump at
the transition point is a function of doping, a lower value
than the standard one predicted by the BCS theory being
observed in the underdoped region.

In this section we calculate the temperature depen-
dence of the specific heat below and above the critical
temperature, extract the specific heat jump at the critical
point and compare our analytical and numerical results
with the available experimental data.

3.1 Pauli’s theorem

According to the Pauli’s theorem the difference between
the superconducting and normal state thermodynamic po-
tential at the transition point can be calculated based on
the following formula [24]:
Qs — 02, 4 d(1/v,
_ / dA/ (A/)2 ( / d)

da’ -’
where (2; and {2, are the thermodynamic potentials in
the superconducting and normal state respectively, and
v is the sample volume. In the critical region the direct
dependence between the inverse of the interacting poten-
tial, 1/Vy, and the superconducting gap, A(T), can be
extracted from equation (5) considering that close to the
transition point the value of the order parameter is small.
Accordingly, one finds that

(10)

v 0

v2(p) |(iwn)® - 2]

i)~ €~ B30 (p)]
Wi(p) [(iwn)? 2]
w P [(iwn)? - € - B2u2(p)]

4

(11)

a result which together with equation (10) leads to

s — 2, _
B ol (GGt
2 zn:/ (2m)? [

g - me)|
(12)

The electronic contribution to the specific heat can be
calculated based on the thermodynamic potential as C' =
—T92§2/9T. One can see that the knowledge of the spe-
cific heat jump at the critical point requires the knowl-
edge of the temperature dependence of the superconduct-
ing gap in the critical region, below the phase transition
point. A laborious, but straightforward calculation based
on equation (11) gives

(-7)
X [1 — 3.14Af(90) +7.6 <Af€0))2] , (13)

a result which inserted in equation (12) gives for the spe-
cific heat jump at the transition point the following value

C.—C,
v
E £ \2]°
Sx2TLNe {1 — 0.53 45 — 146 (—AOE’O)) }
2

9 _ 327r2Tc2
A = 51e)

1+ 2'62A0(O) A0(0)
It is clear from equation (14) that the presence of the
pseudogap in the single particle excitation spectrum in
the normal state is responsible for the observed suppres-
sion of the specific heat jump at the critical point. Such
an effect seems to be universal, as it is observed in the
underdoped region of most of the HTSC materials phase
diagram [5,14,15].

3.2 Numerical results

The electronic single particle contribution to the specific
heat has a simple linear T-dependence above T, and an ex-
ponential temperature dependence below the critical tem-
perature. A detailed numerical analysis of the temperature
dependence of the specific heat coefficient in underdoped
HTSC was done in reference [13]. The main conclusion of
this study was that the electronic single particle contribu-
tion to the specific heat is not enough to correctly describe
the experimental data in the normal state, the inclusion of
the electronic pair contribution being required in order to
understand these data. The electronic pair contribution,
associated to strong fluctuations of the order parameter
in the critical region above the phase transition point, in-
duces a hump in the normal state specific heat at a tem-
perature of the order of T, and has to be considered to
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understand the general behavior of the specific heat in the
normal state of HTSC [13]. However, no numerical results
were presented for the specific heat jump at the transition
point.

In the following we will present numerical result for the
temperature dependence of the specific heat coefficient,
~(T), in both the superconducting and normal state. Our
analysis will include both electronic single particle and
electronic pair contributions. From the numerical point of
view, a more reliable way to extract the specific heat tem-
perature dependence is to compute C' as the first deriva-
tive of the electronic free energy, C' = dF/dT. In general
the electronic free energy, F, can be calculated based on
the following relation [24]:

E=T Z(iwn + fk)g(k7 iwn)- (15)

k,n

Below the transition temperature the normal Green’s
function G(k,iw,) can be obtained from Gorkov equa-
tions, while for temperatures above the critical temper-
ature the normal state Green’s function, G(k,iw,,), given
by equation (2) should be used instead. Two steps are per-
formed in order to extract the temperature dependence of
the specific heat coefficient. First, we will sum over the
Matsubara frequencies and, secondly, we will numerically
integrate over the momentum space, k. The general result
can be written as:

(16)

E=> S,
k

where Sk has different values in the superconducting and
normal states. For the superconducting state, at temper-
ature smaller the critical temperature, T, after the sum-
mation over the Matsubara frequencies is performed, Sy
can be calculated from the following relation

1
B w2(k)\/A(T)4 +4A%(T) B2
y [25@2(1{) (AX(T) — E2) /&2 + A(T)?y?(k)

Sk

VE + AT)?)? (k)

2GR+ AR VR AT ()

V& + AT)*2 (k) 2T
L 2 () (BAT) — By) V& + BP0 (k)

V& + B(T)?¢? (k)

2 4 B(T)*)* (k) ol V& + B(T)2y%(k)

V& + B(T)?y? (k) 2T ’

(17)

Ay

Ay
I
I

Fig. 2. (a) Temperature dependence of the electronic sin-
gle particle contribution to the specific heat coefficient, v(T),
for different values of the ratio E,/A¢(0). (b) The nor-
malized specific heat coefficient jump at the critical point,
Av(Te)/Avo(Te), (Avo(Te) represents the value of the specific
heat coefficient jump at the transition point in the absence
of the pseudogap) as function of the ratio F,/Aq(0) obtained
from both the numerical (full line) and analytical (dashed line)
calculations.

whereas in for the normal state, at temperatures larger
than the critical temperature, 7., one has:

1
S+ Egy?

Sy = [2&( & + E24?(k)
(k)

— (26 + E}¢*(k)) tanh T

& + Eqy (k)
—1 (18)

The results obtained for the temperature dependence
of the total energy, E, obtained by integrating equa-
tions (17) and (18), match perfectly at the critical point
but the slopes of the curves are different, indicating a dis-
continuity of the specific heat at the transition point. The
specific heat coefficient can be calculated in a straight-
forward manner by taking the derivative as a function
of temperature. The results are presented in Figure 2a.
Two important features are observed: first, as the ana-
lytical results predicted, the specific heat coefficient jump
at the critical point decreases as the value of the pseudo-
gap increases. Secondly, one can see that in the normal
state, above the transition critical temperature, the pseu-
dogap presence has no effect on the specific heat coeffi-
cient, a constant value being obtained as the electronic
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Fig. 3. Different contributions to the specific heat coefficient
as function of temperature in the presence of the pseudogap
(E4/A0(0) = 0.4). The total electronic contribution (dotted
line) to the specific heat coefficient is obtained as a sum of the
electronic single particle contribution (full line) and electronic
pair contribution (dashed line). A similar qualitative behavior
was reported for HT'SC in references [14,15].

single particle contribution is considered. Therefore, to
explain the broad hump observed experimentally in the
normal state specific heat, different mechanisms should be
considered. Figure 2b presents the normalized specific heat
coefficient jump at the transition point as function of the
ratio E,/Ao(0), as extracted from numerical and analyt-
ical calculations. As expected, there are slight differences
between the slopes of the numerical and analytical curves,
a feature which is due to successive approximations used
in the analytical calculation.

As we already mentioned different contributions to
the specific heat coefficient, v(T"), have to be consid-
ered for a better understanding of the HTSC specific
heat data at high temperatures corresponding to the
normal state [14,15]. One possible mechanism was con-
sidered by Moca and Janko [13], and is related to the
strong nature of the order parameter fluctuations in the
critical region, leading to an important electronic pair
contribution to the specific heat coefficient in the nor-
mal state. This contribution has been evaluated previ-
ously [13] and we quote here the result for completeness,
CPYT ~ (T*/T)? exp(—2T*/T), where T* = 2rE? /g and
g describes the quasiparticle interaction. Figure 3 presents
the temperature dependance of the specific heat coefficient
in the presence of a normal state pseudogap (E,/A(0)).
Electronic single particle and electronic pair contributions
are summed to obtained the total electronic specific heat
coefficient. The electronic single particle contribution is
important for the specific heat coefficient jump at the

transition point, whereas the electronic pair contribution
can explain the broad maximum observed in the specific
heat coefficient at high temperatures in the normal state.
Note that no specific heat coefficient jump at the transi-
tion point is associated to the electronic pair contribution.
A similar qualitative behavior of the total electronic spe-
cific heat coefficient was reported for HT'SC [5,14,15].

4 Conclusions

The nature of the pseudogap is still an open question and
its explanation is beyond the scope of this paper. Using a
simple phenomenological model we have investigated the
temperature dependence of the specific heat coefficient
both below and above the critical point for HT'SC charac-
terized by the presence of a pseudogap in the excitation
spectrum of the normal phase. The single particle contri-
bution is the most important contribution to the electronic
specific heat, but this is not sufficient to explain the hump
that develops at high temperatures in the normal state.

An important result that emerges from our calcula-
tions is the behavior of the specific heat jump at the
critical point. Experimentally, in the underdoped region,
where the pseudogap energy is large, the jump is very
small [5] in contrast with the overdoped region where the
pseudogap is practically absent and a BCS-like behavior
emerges with a large jump at the critical point. We have
calculated the electronic single particle contribution to the
specific heat jump at the critical point in the presence of
the pseudogap and a similar dependence to the one exper-
imentally observed was obtained. Increasing the pseudo-
gap the specific heat jump at T, starts to decrease. This
feature can be understand in terms involving the suppres-
sion of the superconducting state in the presence of the
pseudogap, as both the superconducting gap and criti-
cal temperature are smaller due to a loss of states at the
Fermi level. The specific heat anomaly presented in HT'SC
at high temperatures (T > T.) can be successfully under-
stood in terms of two particle (electronic pair) contribu-
tions to the specific heat [13]. Note that the pair contribu-
tion to the specific heat does not affect the specific heat
jump at the transition point.

Our analysis is based both on analytical and numerical
calculations. The restrictions imposed by the approxima-
tions used in the analytical calculation lead to differences
between the analytical and numerical results. Basically,
the analytical results are reasonable around the optimal
doping point and in the overdoped region, where the value
of the observed pseudogap is small. With respect to the
phase diagram one should mention that the model we used
is valid only in the second scenario discussed in the intro-
duction, as the pseudogap presence leads to a reduction
of the normal-superconducting phase transition tempera-
ture, meaning that the pseudogap should completely dis-
appear around the optimal doping point. However, it is
generally accepted that in the overdoped region the stan-
dard Fermi liquid and BCS theories are still valid, any
inclusions of a pseudogap in the description of the system
properties being inappropriate.
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